Tilmann Weber – DTU


The Novo Nordisk Foundation Center for Biosustainability
Technical University of Denmark
Kemitorvet, Building 220
2800 Kgs. Lyngby
Phone: +45 24 89 61 32
Email: [email protected]

Twitter: @tilmweber
LinkedIn: Tilmann Weber
ORCID: 0000-0002-8260-5120


  • 1999 Diploma (Diplom-Biologe), Eberhard Karls University, Tübingen, Germany
  • 2004 PhD (Dr. rer. nat.), Eberhard Karls University, Tübingen, Germany
  • 2012 Habilitation in Microbiology, Eberhard Karls University Tübingen, Germany; Privatdozent at Tübingen University


  • 1999-2004 PhD student / scientist (wissenschaftlicher Angestellter/scientific employee) at Tübingen University; project manager for BMBF GenoMik project (led by W. Wohlleben)
  • 2004-2010 Wissenschaftlicher Assistent (C1; ~Assistant Professor) at the Faculty of Biology of Tübingen University
  • 2010-2013 Independent Junior Group leader at the Interfaculty Institute of Microbiology and Infection Medicine, University Tübingen
  • Since 2013: Senior Scientist / Co-Principal Investigator of the New Bioactive compounds (NBC) section at the NNF Center for Biosustainability, Technical University of Denmark
  • Since 2018: Professor for Natural Products Genome Mining at the NNF Center for Biosustainability, Technical University of Denmark


  • 2013 Nachwuchswissenschaftler-Preis für Naturstoff-Forschung der DECHEMA e.V. (DECHEMA price for Natural Products Research)
  • 2015 NNF Center for Biosustainability Best Innovation Award

Editorial activities

  • Memberships in editorial boards: Cell Chem. Biol., Scientific Reports, Metabolic Engineering
  • Associate Editor: Synth. Syst. Biotechnol.


Dr Weber is working on genome-based approaches to study and engineer secondary metabolite biosynthetic pathways in microorganisms.
He has pioneered in the development of bioinformatics tools to analyze such pathways. In close collaboration with international collaboration partners, the Weber group develops and provides the web-service of antiSMASH, the world-leading platform for the comprehensive genome-based analysis of secondary metabolite pathways, which is used by scientists from academia and industry all over the world.

The in silico work is directly coupled to experimental work of the group. His group was/is involved in the identification and characterization of various antibiotics biosynthetic pathways, such as streptocollin or kirromycin. The kirromycin pathway codes for a unique discrete PKS acyltransferase, which has a high potential for use in synthetic biology to rationally engineer polyketide biosynthesis pathways to generate novel compounds.

In addition, he is involved in developing molecular tools for the metabolic engineering of actinomycetes, e.g. a CRISPR toolkit for actinomycetes

Selected Publications

  1. Tong, Y., Whitford, C.M., Robertsen, H.L., Blin, K., Jorgensen, T.S., Klitgaard, A.K., Gren, T., Jiang, X., Weber, T., and Lee, S.Y. (2019). Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. Proc Natl Acad Sci U S A 116, 20366-20375.
  2. Kautsar, S.A., Blin, K., Shaw, S., Navarro-Munoz, J.C., Terlouw, B.R., van der Hooft, J.J.J., van Santen, J.A., Tracanna, V., Suarez Duran, H.G., Pascal Andreu, V., et al. (2019). MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res, https://doi.org/10.1093/nar/gkz1882.
  3. Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S.Y., Medema, M.H., and Weber, T. (2019). antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47, W81-W87.
  4. Blin, K., Pascal Andreu, V., de los Santos, E.L., Del Carratore, F., Lee, S.Y., Medema, M.H., and Weber, T. (2019). The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic Acids Res 47, D625-D630.
  5. Musiol-Kroll, E.M., Zubeil, F., Schafhauser, T., Härtner, T., Kulik, A., McArthur, J., Koryakina, I., Wohlleben, W., Grond, S., Williams, G.J., et al. (2017). Polyketide Bioderivatization Using the Promiscuous Acyltransferase KirCII. ACS Synth Biol 6, 421-427.
  6. Jiang, X., Hashim-Ellabaan, M.M., Charusanti, P., Munck, C., Blin, K., Tong, Y., Weber, T., Sommer, M.O.A., and Lee, S.Y. (2017). Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat. Commun. 8, 15784.
  7. Blin, K., Wolf, T., Chevrette, M.G., Lu, X., Schwalen, C.J., Kautasar, S.A., Suarez Duran, H.G., de los Santos, E.L.C., Kim, H.U., Nave, M., et al. (2017). antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res., doi: 10.1093/nar/gkx1319.
  8. Blin, K., Medema, M.H., Kottmann, R., Lee, S.Y., and Weber, T. (2017). The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters. Nucleic Acids Res. 45, D555-D559.
  9. Tong, Y., Charusanti, P., Zhang, L., Weber, T., and Lee, S.Y. (2015). CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol. 4, 1020-1029.
  10. Medema, M.H., Kottmann, R., Yilmaz, P., Cummings, M., Biggins, J.B., Blin, K., de Bruijn, I., Chooi, Y.H., Claesen, J., Coates, R.C., et al. (2015). Minimum information about a biosynthetic gene cluster. Nat. Chem. Biol. 11, 625-631.